Компьютерные подсказки

Вылетает Сталкер: Зов Припяти Программа икс рей 1

Stalker lost alpha гид по прохождению

Pony Express отслеживание почтовых отправлений

Pony Express – время и сроки доставки с Алиэкспресс в Россию

Застряли посылки с Алиэкспресс со статусом Hand over to airline: что делать?

РФ (Nigma) — интеллектуальная поисковая система

Данные для семантики — Яндекс Вордстат

Пиар ВКонтакте при помощи бирж: особенности и использование

Почему я не могу отправить сообщение?

Предупреждение «Подключение не защищено» в Google Chrome по протоколу https Нарушена конфиденциальность данных яндекс браузер

Всё что известно о смартфоне Samsung Galaxy S9 Аккумуляторная батарея Galaxy S9 и мощность

Темы оформления и русификация форума SMF, а так же установка компонента JFusion в Joomla

Автоматическое определение движка форума Позже board powered by smf

Коды в игре скайрим - зелья, ингредиенты, заклинания Код на ингредиенты скайрим

Подробная инструкция, как в "скайриме" открыть дверь золотым когтем

Объемно – Пространственная Модель. Пространственные модели местности Технические средства и методы создания ПММ

Классификация моделей

Учебные элементы параграфа:

1. Назначение моделей. Способ воплощения моделей.

2. Абстрактная модель. Вещественная модель.

3. Язык описания модели. Способ построения модели.

4. Подобие. Прямое подобие. Косвенное подобие. Условное подобие.

5. Текстовая модель. Графическая модель. Математическая модель.

6. Аналитическая модель. Экспериментальная модель. Пространственная модель.

7. Соответствие моделей оригиналу. Конечность моделей упрощенность, приближенность моделей.

Целевая предназначенность моделей позволяет всё разнообразное множество моделей разделить на три основных типа по назначению: познавательные , прагматические , чувственные ), для различных объектов (рис. 1.3).


Рис.1.3 Классификация моделей

Познавательные модели являются формой организации и представления знаний, средством соединений новых знаний с уже имеющимися. Поэтому при обнаружении расхождения между моделью и реальностью встаёт задача устранения этого расхождения с помощью изменения модели. Познавательная деятельность основана на приближении модели и реальности (рис. 1.4а).

Прагматические модели являются средством организации практических действий, средством управления, способом представления образцовых действий или их результата.

б а


Рис. 1.4. Различия между познавательной (а) и прагматической моделью (б)

Использование прагматических моделей состоит в том, чтобы при обнаружении расхождений между моделью и реальностью направить усилия на изменения реальности так, чтобы приблизить реальность к модели

Примерами прагматических моделей могут служить планы, программы, экзаменационные требования, инструкции, руководства и т.д. (рис. 1.4б).

Чувственные модели служат для удовлетворения эстетических потребностей человека (произведение искусства).

Другим принципом классификации целей моделирования служит деление моделей на статические и динамические.

Статические модели отражают конкретное состояние объекта (моментальная фотография). Если нужно изучить различия между состояниями системы строят динамические модели.

Модели сознательно создаваемые субъектом (человеком) воплощаются из двух типов материалов годных для их построения - средства окружающего мира и средства самого сознания человека.

По этому признаку модели делятся на абстрактные (идеальные, мысленные, символические) и вещественные (материальные, реальные).

Абстрактные модели являются идеальными конструкциями, построенными средствами мышления. Их различают по языку описания и способу построения (рис.1.3).

По способу построения абстрактные модели делятся на аналитические (теоретические), формальные (экспериментальные) и комбинированные . Аналитические модели строятся по данным о внутренней структуре объекта и на основе физических законов, описывающих протекающие в нём процессы.

Формальные модели строятся по данным экспериментальных исследований, в процессе которых устанавливаются взаимосвязи между входными воздействиями и (выходными) параметрами состояния объекта.

Комбинированные модели используют принцип уточнения в эксперименте параметры структуры и закономерностей аналитической модели.

По типу языка описания символические модели разделяются на текстовые (словесные), графические (чертежи, схемы), математические и комбинированные .

Чтобы некоторая материальная конструкция могла быть отображением, т.е. замещала в каком-то отношении оригинал, между моделью и оригиналом должно быть установлено отношение подобия .

Будем различать три вида подобия: прямое, косвенное и условное (рис. 1.3).

Прямое подобие может быть пространственным (макеты судов, самолётов, манекены и т.д.) и физическим . Физическим подобием называют явления в геометрически подобных системах, у которых в процессе их функционирования отношения характеризующих их одноимённых физических величин в сходственных точках являются постоянной величиной (критерии подобия). Пример физической модели - испытание макета самолёта в аэродинамической трубе.

Второй тип подобия в отличие от прямого подобия называют косвенным . Косвенное подобие между оригиналом и моделью устанавливается не в результате их физического взаимодействия, а объективно существует в природе, обнаруживается в виде совпадения или достаточной близости их абстрактных моделей и после этого используются в практике реального моделирования. Примером косвенного подобия служит аналогии между физическими (фазовыми) переменными (табл. 1.1).

Таблица 1.1

Вид системы Фазовые переменные Типа потока Типа потенциала Механическая поступательная Сила, F Скорость, u Механическая вращательная Момент, M Угловая скорость, w Механическая упругая Сила, F Деформация, s Гидроаэромеханическая Расход (поток), Давление, P Тепловая Тепловой поток, Q Температура, T Электрическая Ток, I Напряжение, U

Закономерности механических, тепловых, электрических процессов описываются одинаковыми уравнениями: различие состоит лишь в разной физической интерпретации переменных входящих в уравнения.

В результате оказывается возможным не только заменить громоздкое экспериментирование с механической или тепловой системой, на простые опыты с электрической схемой (R , L , C - цепи) или электронной моделью (АВМ).

Роль моделей обладающих косвенным подобием оригинала, очень велика. Часы - аналог времени. Аналоговые и цифровые вычислительные моменты (материальный объект) позволяет найти решение любого дифференциального уравнения.

Третий особый класс реальных моделей образуют модели, подобие которых оригиналу не является ни прямым, ни косвенным, а устанавливается в результате соглашения. Такое подобие называют условным .

Примерами условного подобия служат деньги (модель стоимости), знаки дорожного движения (модель сообщения) и т.д.

С моделями условного подобия приходится иметь дело очень часто. Они являются способом материального воплощения абстрактных моделей, вещественной формой, в которой абстрактные модели могут передаваться от одного человека к другому, хранится до момента их использования, т.е. отчуждаться от сознания и всё-таки сохранять возможность возвращения в абстрактную форму. Это достигается с помощью соглашения о том, какое состояние реального объекта ставится в соответствие данному элементу абстрактной модели. Такое соглашение принимает вид совокупности правил построения моделей условного подобия и правил пользования ими.

Модель объекта можно охарактеризовать несколькими признаками (таблицы 1.2 и 1.3).

Таблица 1.2

Объект Модель Назначение Способ воплощения Язык описания Корабль Макет корабля Познавательная материальный Электрическая цепь I=U/R Познавательная абстрактный математический Бак с водой Ty ’ +y =kx решаемая на ПК Познавательная абстрактный математический Телевизор Инструкция пользователя Прагматическая материальный текстовый Клапан Чертеж для изготовления Прагматическая абстрактный графический Стоимость товара Сумма оплаты купюрами Прагматическая материальный Человек Портрет Чувственная материальный Объект Модель Вид подобия Способ построения Вид задачи Корабль Макет корабля Прямое физическое экспериментальный динамическая Электрическая цепь I=U/R косвенное аналитический статическая Бак с водой Ty ’ +y =kx решаемая на ПК косвенное аналитический динамическая Телевизор Инструкция пользователя Клапан Чертеж косвенное Стоимость товара Сумма оплаты купюрами условное Человек Портрет прямое пространственное

Таблица 1.3

Таким образом, мы рассмотрели вопросы о том, что отображает модель, из чего и как она может быть построена, каковы внешние условия осуществления функций модели. Но важен и вопрос о ценности самого моделирования, т.е. отношение моделей с отображаемой ими реальностью: чем отличаются модели и моделируемые объекты или явления, в каком смысле, и до какой степени можно отождествлять модель с оригиналом.

Различают следующие главные отличия модели от оригинала: конечность, упрощенность и приближенность (адекватность).

Модель конечна , так как она отображает оригинал лишь в конечном числе отношений при ограниченном количестве ресурсов.

Модель всегда упрощенно отображает оригинал за счет конечности модели; отображение только главных существенных свойств и отношений; ограниченностью средств оперирования с моделью. Упрощённость характеризует качественные различия модели и оригинала.

Модель отображает оригинал приближённо. Этот аспект допускает количественную оценку различия (“больше - меньше”, “лучше - хуже”). С приближенностью модели связано понятие адекватность .

Модель с помощью, которой успешно достигается поставленная цель, называют адекватной этой цели.

Адекватность модели не гарантирует требования полноты, точности и истинности модели, но означает, что они выполняются в той мере, которая достаточна для достижения цели. Упрощение и приближённость модели необходимы, неизбежны, но замечательное свойство мира и нас самих состоит в том, что этого достаточно для человеческой практики.

Между моделью и оригиналом кроме различий есть сходства .

Сходство выражается, прежде всего, в истинности модели. Степень истинности модели выясняется только в её практическом соотношении с отображенной ею натурой. При этом изменение условий, в которых ведётся сравнение, весьма существенно влияет на результат: именно из-за этого возможно существование двух противоречивых, но “одинаково” истинных моделей одного объекта. Яркий пример этого – волновая и корпускулярная модели электрона.

Сходство модели и оригинала зависит от сочетания истинного и ложного типов модели. Кроме, безусловно, истинного содержания в модели имеется: 1) условно истинное (т.е. верное лишь при определенных условиях); 2) предположительно истинное (т.е. условно – истинное при неизвестных условиях), а следовательно, логичное. При этом в каждых конкретных условиях неизвестно точно, каково же фактическое соотношение истинного и ложного в данной модели. Ответ на этот вопрос только практика.

Однако в любом случае модель принципиально беднее оригинала, это ее фундаментальное свойство.

Завершая рассмотрение понятия “моделирование” следует подчеркнуть, что, собираясь создавать модель системы нужно иметь в виду следующую схему (рис. 1.5):


Рис.1.5. Оценка ситуации моделирования

Широкое распространение при исследовании технических систем получил метод математического моделирования, который рассмотрим более подробно.

Вопросы

1. Какие признаки образуют семейство моделей по назначению?

2. Какие признаки образуют семейство моделей по способу воплощения?

3. Какие признаки образуют типы моделей по подобию?

4. Чем отличается прагматическая модель от познавательной модели?

5. На каких языках можно представлять модели?

6. Каковы виды прямого подобия материальных моделей?

7. Чем отличаются между собой вещественные модели косвенного и условного подобия?

8. Каковы признаки отличия модели и оригинала?

9. С помощью, каких вопросов можно оценить ситуацию моделирования?

§ 1.1. 4. Объекты моделирования и их классификация

Учебные элементы параграфа:

1. Признаки классификации объектов моделирования .

2. Тип, свойства и методы исследования объекта.

3. Непрерывные - дискретные объекты.

4. Стационарные - не стационарные объекты.

5. Сосредоточенные - распределённые объекты.

6. Одномерные, многомерные объекты.

7. Детерминированные - стохастические объекты.

8. Динамические - статические объекты.

9. Линейные, не линейные объекты.

10. Аналитические, идентифицируемые, комбинированные методы исследования.

11. Математическая модель .

12. Математическое моделирование .

13. Параметры и фазовые переменные модели.

14. Характеристики моделей (универсальность, точность, адекватность и экономичность).

15. Признаки классификации ММ:

16. Структурные - функциональные модели;

17. Полные - макромодели;

18. Аналитические - алгоритмические модели;

Свойства стационарности не стационарности характеризуют степень изменчивости объекта во времени.

Свойства сосредоточенности распределённости характеризует объектыс точки зрения роли, которую играет в их модельном описании пространственная протяжённость и конечная скорость распространения в пространстве физических процессов.

Если пространственной протяжённостью можно пренебречь и считать, что независимой переменной, характерной для объекта, является только время, то говоря

т об объекте с сосредоточенными параметрами .

В пространственно протяжённых объектах (газы, деформирующие тела) необходимо учитывать зависимость характеристик от координат.

Для всех реально существующих объектов присуще свойство стохастичности . Определение детерминированности означает лишь тот факт, что по условиям решаемой задачи и применительно к свойствам конкретного объекта случайные факторы можно не учитывать.

Понятие динамический объект отражает изменение параметров объекта во времени. Это происходит из-за конечной скорости накопления запасов вещества и энергии, аккумулируемых объектом.

В статическом объекте связь входных и выходных параметров не учитывает динамических эффектов.

Весьма существенно деление объектов на линейные и нелинейные . Различие между ними заключается в том, что для первых справедлив принцип суперпозиции (положения), когда каждый из выходов объекта характеризуется линейной зависимостью от соответствующих входных переменных.

Объекты с одним выходом называют одномерными , а с несколькими многомерными .

Деление методов исследования объектов моделирования на аналитические, которые основаны на ранее изученных и описанных в математической форме закономерностях объекта и идентифицируемые, которые строятся на основе специального экспериментального исследования, связано со степенью сложности объекта.

Вопросы для самоконтроля и подготовки к МК:

По каким признакам классифицируют объекты моделирования?

Чем отличаются детерминированные объекты от стохастических?

По каким признакам можно отличить динамический объект от статического?

Что характерно для непрерывного объекта моделирования?

Классификация видов моделирования может быть проведена по разным основаниям. Модели можно различать по ряду признаков: характеру моделируемых объектов, сферам приложения, глубине моделирования. Рассмотрим 2 варианта классификации. Первый вариант классификации. По глубине моделирования методы моделирования делятся на две группы: материальное (предметное) и идеальное моделирование. Материальное моделирование основано на материальной аналогии объекта и модели. Оно осуществляется с помощью воспроизведения основных геометрических, физических или функциональных характеристик изучаемого объекта. Частным случаем материального моделирования является физическое моделирование. Частным случаем физического моделирования является аналоговое моделирование. Оно основано на аналогии явлений, имеющих различную физическую природу, но описываемых одинаковыми математическими соотношениями. Образец аналогового моделирования – изучение механических колебаний (например, упругой балки) с помощью электрической системы, описываемой теми же дифференциальными уравнениями. Так как эксперименты с электрической системой обычно проще и дешевле, она исследуется в качестве аналога механической системы (например, при изучении колебаний мостов).

Идеальное моделирование основано на идеальной (мысленной) аналогии. В экономических исследованиях (на высоком уровне их проведения, а не на субъективных желаниях отдельных руководителей) это основной вид моделирования. Идеальное моделирование, в свою очередь, разбивается на два подкласса: знаковое (формализованное) и интуитивное моделирование. При знаковом моделировании моделями служат схемы, графики, чертежи, формулы. Важнейшим видом знакового моделирования является математическое моделирование, осуществляемое средствами логико-математических построений.

Интуитивное моделирование встречается в тех областях науки и практики, где познавательный процесс находится на начальной стадии или имеют место очень сложные системные взаимосвязи. Такие исследования называют мысленными экспериментами. В экономике в основном применяется знаковое или интуитивное моделирование; оно описывает мировоззрение ученых или практический опыт работников в сфере управления ею. Второй вариант классификации приведен на рис. 1.3.В соответствии с классификационным признаком полноты моделирование делится на полное, неполное и приближенное. При полном моделировании модели идентичны объекту во времени и пространстве. Для неполного моделирования эта идентичность не сохраняется. В основе приближенного моделирования лежит подобие, при котором некоторые стороны реального объекта не моделируются совсем. Теория подобия утверждает, что абсолютное подобие возможно лишь при замене одного объекта другим точно таким же. Поэтому при моделировании абсолютное подобие не имеет места. Исследователи стремятся к тому, чтобы модель хорошо отображала только исследуемый аспект системы. Например, для оценки помехоустойчивости дискретных каналов передачи информации функциональная и информационная модели системы могут не разрабатываться. Для достижения цели моделирования вполне достаточна событийная модель, описываемая матрицей условных вероятностей ||рij|| переходов i-го символа алфавита j-й.В зависимости от типа носителя и сигнатуры модели различаются следующие виды моделирования: детерминированное и стохастическое, статическое и динамическое, дискретное, непрерывное и дискретно-непрерывное. Детерминированное моделирование отображает процессы, в которых предполагается отсутствие случайных воздействий. Стохастическое моделирование учитывает вероятностные процессы и события. Статическое моделирование служит для описания состояния объекта в фиксированный момент времени, а динамическое - для исследования объекта во времени. При этом оперируют аналоговыми (непрерывными), дискретными и смешанными моделями. В зависимости от формы реализации носителя моделирование классифицируется на мысленное и реальное. Мысленное моделирование применяется тогда, когда модели не реализуемы в заданном интервале времени либо отсутствуют условия для их физического создания (например, ситуация микромира). Мысленное моделирование реальных систем реализуется в виде наглядного, символического и математического. Для представления функциональных, информационных и событийных моделей этого вида моделирования разработано значительное количество средств и методов. При наглядном моделировании на базе представлений человека о реальных объектах создаются наглядные модели, отображающие явления и процессы, протекающие в объекте. Примером таких моделей являются учебные плакаты, рисунки, схемы, диаграммы. В основу гипотетического моделирования закладывается гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изучаемого объекта. Этот вид моделирования используется, когда знаний об объекте недостаточно для построения формальных моделей.

Динамическое моделирование – многошаговый процесс, каждый шаг соответствует поведению экономической системы у определенный временный период. Каждый текущий шаг получает результаты предыдущего шага, который по определенным правилам определяет текущий результат и формирует данные для следующего шага.

Таким образом, динамическая модель в ускоренном режиме позволяет исследовать развития сложной экономической системы, скажем, предприятия, на протяжении определенного периода планирования в условиях изменения ресурсного обеспечения (сырья, кадров, финансов, техники), и получение результаты представить у соответствующему плане развития предприятия на заданный период.

Для решения динамических задач оптимизации в математическом программировании сформировался соответствующий класс моделей под названием динамическое программирование, его основателем стал известный американский математик Р. Беллман. Им предложен специальный метод решения задача этого класса на основе «принципа оптимальности», согласно которого оптимальное решение задачи находится путем ее разбиения на n этапов, каждый с которых представляет подзадачу относительно одной переменной. Расчет выполняется таким образом, что оптимальный результат одной подзадачи является исходными данными для следующей подзадачи с учетом уравнений и ограничений связи между ними, результат последней из них является результатом всей задачи. Общим для всех моделей этой категории является то, что текущие управляющие решения "проявляются" как в период, относящийся непосредственно к моменту принятия решения, так и в последующие периоды. Следовательно, наиболее важные экономические последствия проявляются в разные периоды, а не только в течение одного периода. Такого рода экономические последствия, как правило, оказываются существенными в тех случаях, когда речь идет об управляющих решениях, связанных с возможностью новых капиталовложений, увеличения производственных мощностей или обучения персонала с целью. создания предпосылок для увеличения прибыльности или сокращения издержек в последующие периоды.

Типичными областями применения моделей динамического программирования при принятии решений являются:

Разработка правил управления запасами, устанавливающих момент пополнения запасов и размер пополняющего заказа.

Разработка принципов календарного планирования производства и выравнивания занятости в условиях колеблющегося спроса на продукцию.

Определение необходимого объема запасных частей, гарантирующего эффективное использование дорогостоящего оборудования.

Распределение дефицитных капитальных вложений между возможными новыми направлениями их использования.

В задачах, решаемых методом динамического программирования, значение целевой функции (оптимизируемого критерия) для всего процесса получают простым суммированием частных значений fi(x) того же критерия на отдельных шагах, то есть

Если критерий (или функция) f(x) обладает этим свойством, то его называют аддитивным (аддитивной).

Алгоритм динамического программирования

1. На выбранном шаге задаем набор (определяемый условиями-ограничениями) значений переменной, характеризующей последний шаг, возможные состояния системы на предпоследнем шаге. Для каждого возможного состояния и каждого значения выбранной переменной вычисляем значения целевой функции. Из них для каждого исхода предпоследнего шага выбираем оптимальные значения целевой функции и соответствующие им значения рассматриваемой переменной. Для каждого исхода предпоследнего шага запоминаем оптимальное значение переменной (или несколько значений, если таких значений больше одного) и соответствующее значение целевой функции. Получаем и фиксируем соответствующую таблицу.

2. Переходим к оптимизации на этапе, предшествующем предыдущему (движение "вспять"), отыскивая оптимальное значение новой переменной при фиксированных найденных ранее оптимальных значениях следующих переменных. Оптимальное значение целевой функции на последующих шагах (при оптимальных значениях последующих переменных) считываем из предыдущей таблицы. Если новая переменная характеризует первый шаг, то переходим к п.З. В противном случае повторяем п.2 для следующей переменной.

З. При данном в задаче исходном условии для каждого возможного значения первой переменной вычисляем значение целевой функции. Выбираем оптимальное значение целевой функции, соответствующее оптимальному(ым) значению(иям) первой переменной.

4. При известном оптимальном значении первой переменной определяем исходные данные для следующего (второго) шага и по последней таблице - оптимальное(ые) значение(ия) следующей (второй) переменной.

5. Если следующая переменная не характеризует последний шаг, то переходим к п.4.Иначе переходим к п.6.

6.Формируем (выписываем) оптимальное решение.


Список использованной литературы

1. Microsoft Office 2010. Самоучитель. Ю. Стоцкий, А. Васильев, И. Телина. Питер. 2011, - 432 с.

2. Фигурнов В.Э. IBM PC для пользователя. Изд-е 7-е. - М.: Инфра-М, 1995.

3. Левин А. Самоучитель работы на компьютере. М. : Нолидж, 1998, - 624 с.

4. Информатика: практикум по технологии работы на персональном компьютере /Под ред. проф. Н.В.Макаровой - М. : Финансы и статистика, 1997 г. - 384с.

5. Информатика: Учебник / Под ред. проф. Н.В. Макаровой - М. : Финансы истатистика, 1997 г. - 768 с.


Похожая информация.


Пространственное объединение отдельных элементов технического объекта широко распространенная задача проектирования в любой отрасли техники: радиоэлектроники, машиностроения, энергети­ки и т. д. Значительную частью пространственного моделирования доставляет визуализация отдельных элементов и технического объекта в целом Большой интерес представляют вопросы построения базы данных графических трехмер­ных моделей элементов, алгоритмы и программная реализация графи­ческих приложений для решения данной задачи.

Построение моделей элементов носит универсальный характер и может рассматриваться как инвариантная часть многих систем пространственного моделирования и автоматизированного проектирования технических объектов.

Независимо от возможностей используемой графической среды по характеру формирования графических моделей можно выделить три группы элементов:

1.Уникальные элементы, конфигурация и размеры которых не повторяются в других аналогичных деталях.

2.Унифицированные элементы, включающие некоторый набор Фрагментов конфигураций, характерных для деталей данного класса. Как правило, существует ограниченный ряд типоразмеров унифицированного элемента.

3.Составные элементы, включающие как уникальные, так и унифицированные элементы в произвольном наборе. Используемые графические средства могут допускать некоторую вложенность составных элементов.

Пространственное моделирование уникальных элементов не представляет большой сложности. Прямое формирование конфигурации модели выполняется в интерактивном режиме, после чего программ­ная реализация оформляется на основе протокола формирования мо­дели или текстового описания полученного элемента.

2.Поочередный выбор фрагментов пространственной конфигурации и определение их размеров;

3.Привязка графической модели элемента к прочим элемента, технического объекта или системы;

4.Ввод дополнительной информации о моделируемом элементе

Данный подход формирования моделей унифицированных элементов обеспечивает надежную программную реализацию.

Модель составных элементов состоит из совокупности модели как уникальных, так и унифицированных элементов. Процедурно модель составного элемента строится аналогично модели унифицированного элемента, в которой в качестве графических фрагменте: выступают готовые модели элементов. Основными особенностями являются способ взаимной привязки включаемых моделей и механик объединения отдельных фрагментов в составной элемент. Последнее определяется, главным образом, возможностями инструментальных графических средств.

Интеграция графической среды и системы управления базами данных (СУБД) технической информации обеспечивает открытость системы моделирования для решения других задач проектирования: предварительные конструкторские расчеты, подбор элементной базы, оформление конструкторской документации (текстовой и графической) и др. Структура баз данных (БД) определяется как требованиями графических моделей так и информационными потребностями сопутствующих задач. В качестве инструментальных средств возможно использовать любую СУБД, сопрягаемую с графической средой. Наиболее общий характер носит построение моделей унифицированных элементов. На первом этапе в результате систематизации номенклатуры элементов, однотипных по назначению и составу гра­фических фрагментов, формируется гипотетический или выбирается существующий образец моделируемого элемента, обладающий полным набором моделируемых частей объекта.

    Методы интерполяции по дискретно расположенным точкам.

Общая задача интерполяции по точкам формулируется так: дан ряд точек (узлов интерполяции), положение и значения характеристик в которых известны, необходимо определить значения характеристик для других точек, для которых известно только положение. При этом различают методы глобальной и локальной интерполяции, и среди них точные и аппроксимирующие.

При глобальной интерполяции для всей территории одновременно используется единая функция вычисления z = F(x,y) . В этом случае изменение одного значения (х, у) на входе сказывается на всей результирующей ЦМР. При локальной интерполяции многократно применяют алгоритм вычисления для некоторых выборок из общего набора точек, как правило, близко расположенных. Тогда изменение выбора точек сказывается лишь на результатах обработки небольшого участка территории. Алгоритмы глобальной интерполяции создают сглаженные поверхности с небольшим числом резких перепадов; они применяются в случаях, если предположительно известна форма поверхности, например тренд. При включении в процесс локальной интерполяции большой доли общего набора данных она, по сути, становится глобальной.

    Точные методы интерполяции.

Точные методы интерполяции воспроизводят данные в точках (узлах), на которых базируется интерполяция, и поверхность проходит через все точки с известными значениями. анализ соседства, в котором все значения моделируемых характеристик принимаются равными значениям в ближайшей известной точке. В результате образуются полигоны Тиссена с резкой сменой значений на границах. Такой метод применяется в экологических исследованиях, при оценке зон воздействия, и больше подходит для номинальных данных.

В методе В-сплайнов строят кусочно-линейный полином, позволяющий создать серию отрезков, которые в конечном итоге образуют поверхность с непрерывными первой и второй производными. Метод обеспечивает непрерывность высот, уклонов, кривизны. Результирующая ЦМР имеет растровую форму. Этот метод локальной интерполяции применяется, главным образом, для плавных поверхностей и не годится для поверхностей с отчетливо выраженными изменениями - это приводит к резким колебаниям сплайна. Он широко используется в программах интерполяции поверхностей общего назначения и сглаживания изолиний при их рисовке.

В TIN-моделях поверхность в пределах каждого треугольника обычно представляется плоскостью. Поскольку для каждого треугольника она задается высотами трех его вершин, то в общей мозаичной поверхности треугольники для смежных участков точно прилегают по сторонам: образуемая поверхность непрерывна. Однако, если на поверхности проведены горизонтали, то в этом случае они будут прямолинейны и параллельны в пределах треугольников, а на границах будет происходить резкое изменение их направления. Поэтому для некоторых приложений TIN в пределах каждого треугольника строится математическая поверхность, характеризующаяся плавным изменением углов наклона на границах треугольников. Анализ трендов. Поверхность аппроксимируется многочленом и структура выходных данных имеет вид алгебраической функции, которую можно использовать для расчета значений в точках растра или в любой точке поверхности. Линейное уравнение, например, z = а + b х + су описывает наклонную плоскую поверхность, а квадратичное z = а + b х + су + dx 2 + еху + fy 2 -простой холм или долину. Вообще говоря, любое сечение поверхности т-го порядка имеет не более (т – 1) чередующихся максимумов и минимумов. Например, кубическая поверхность может иметь в любом сечении один максимум и один минимум. Возможны значительные краевые эффекты, поскольку полиномиальная модель дает выпуклую поверхность.

Методы скользящего среднего и среднего взвешенного по расстоянию используются наиболее широко, особенно для моделирования плавно меняющихся поверхностей. Интерполированные значения представляют собой среднюю величину значений для п известных точек, либо среднее, полученное по интерполируемым точкам, и в общем случае обычно представляются формулой

    Аппроксимационные методы интерполяции.

Аппроксимационные методы интерполяции применяются в тех случаях, когда имеется некоторая неопределенность в отношении имеющихся данных о поверхности; в их основе лежит соображение о том, что во многих наборах данных отображается медленно изменяющийся тренд поверхности, на который накладываются местные, быстро меняющиеся отклонения, приводящие к неточностям или ошибкам в данных. В таких случаях сглаживание за счет аппроксимации поверхности позволяет уменьшить влияние ошибочных данных на характер результирующей поверхности.

    Методы интерполяции по ареалам.

Интерполяция по ареалам заключается в переносе данных с одного исходного набора ареалов (ключевого) на другой набор (целевой) и часто применяется при районировании территории. Если целевые ареалы представляют собой группировку ключевых ареалов, сделать это просто. Трудности возникают, если границы целевых ареалов не связаны с исходными ключевыми.

Рассмотрим два варианта интерполяции по ареалам: в первом из них в результате интерполяции суммарное значение интерполируемого показателя (например, численности населения) целевых ареалов в полном объеме не сохраняется, во втором - сохраняется.

Представим, что имеются данные о численности населения для некоторых районов с заданными границами, и их нужно распространить на более мелкую сетку районирования, границы которой в общем не совпадают с первой.

Методика заключается в следующем. Для каждого исходного района (ключевого ареала) рассчитывают плотность населения путем деления общего количества проживающих на площадь участка и присваивают полученное значение центральной точке (центроиду). На основе этого набора точек с помощью одного из методов, описанных выше, интерполируется регулярная сетка, для каждой ячейки сети определяется численность населения путем умножения рассчитанной плотности на площадь ячейки. Интерполированная сетка накладывается на итоговую карту, значения по каждой ячейке относятся к границам соответствующего целевого ареала. Затем рассчитывается общая численность населения каждого из итоговых районов.

К недостаткам метода можно отнести не совсем четкую определенность выбора центральной точки; методы интерполяции по точкам неадекватны, и что важнее всего - не сохраняется суммарная величина интерполируемого показателя ключевых ареалов (в данном случае общей численности населения зон переписи). Например, если исходная зона разделена на две целевые, то общее количество населения в них после интерполяции не обязательно будет равно численности населения исходной зоны.

Во втором варианте интерполяции применяют способы ГИС-технологии оверлея или построения гладкой поверхности, основанного на так называемой адаптивной интерполяции.

В первом способе осуществляют наложение ключевых и целевых ареалов, определяют долю каждого из исходных ареалов в составе целевых, величины показателя каждого исходного ареала делят пропорционально площадям его участков в разных целевых ареалах. Считается, что плотность показателя в пределах каждого ареала одинакова, например, если показатель - это общее население ареала, то плотность населения считается для него постоянной величиной.

Целью второго способа является создание гладкой поверхности без уступов (значения атрибутов не должны резко изменяться на границах ареалов) и сохранение суммарной величины показателя в пределах каждого ареала. Методика его такова. На картограмму, представляющую ключевые ареалы, накладывают густой растр, общее значение показателя для каждого ареала поровну делится между ячейками растра, перекрывающими ее, значения сглаживают путем замены величины для каждой ячейки растра средним по окрестности (по окну 2×2, 3×3, 5×5) и суммируют значения для всех ячеек каждого ареала. Далее значения для всех ячеек корректируют пропорционально так, чтобы общее значение показателя для ареала совпадало с исходным (например, если сумма меньше исходного значения на 10%, значения для каждой ячейки увеличиваются на 10%). Процесс повторяют до тех пор, пока не. прекратятся изменения.

Для описанного метода однородность в пределах ареалов необязательна, но слишком сильные вариации показателя в их пределах могут отразиться на качестве интерполяции.

Результаты могут быть представлены на карте горизонталями или непрерывными полутонами.

Применение метода требует задания некоторых граничных условий, так как по периферии исходных ареалов элементы растра могут выходить за пределы области изучения или соседствовать с ареалами, не имеющими значения интерполируемого показателя. Можно, например, присвоить плотности населения значение 0 (озеро и т. п.) или принять ее равной значениям самых дальних от центра ячеек области изучения.

При интерполяции по ареалам могут возникнуть весьма сложные случаи, например, когда нужно создать карту, показывающую «ареалы расселения», на основе данных о населении отдельных городов, особенно если эти ареалы в масштабе карты показываются точкой. Проблема возникает и для небольших исходных ареалов, когда отсутствуют файлы границ, а в данных указывается только положение центральной точки. Здесь возможны разные подходы: замена точек, к которым приписаны данные, на круги, радиус которых оценивается по расстояниям до соседних центроидов; определение пороговой плотности населения для отнесения территории к городской; распределение населения каждого города по его территории так, что в центре плотность населения выше, а к окраинам уменьшается; по точкам с пороговым значением показателя проводят линии, ограничивающие заселенные территории.

Часто попытка создать непрерывную поверхность с помощью интерполяции по ареалам по данным, приуроченным только к точкам, приводит к неправильным результатам.

Пользователь обычно оценивает успешность применения метода субъективно и, главным образом, визуально. До сих пор многие исследователи используют ручную интерполяцию или интерполяцию «на глазок» (этот метод обычно невысоко оценивается географами и картографами, однако широко используется геологами). В настоящее время предпринимаются попытки «извлечь» познания экспертов с помощью методов создания баз знаний и ввести их в экспертную систему, осуществляющую интерполяцию.

Определение. Под динамической системой понимается объект, находящийся в каждый момент времени tT в одном из возможных состояний Z и способный переходить во времени из одного состояния в другое под действием внешних и внутренних причин.

Динамическая система как математический объект содержит в своем описании следующие механизмы:

  • - описание изменения состояний под действием внутренних причин (без вмешательства внешней среды);
  • - описание приема входного сигнала и изменения состояния под действием этого сигнала (модель в виде функции перехода);
  • - описание формирования выходного сигнала или реакции динамической системы на внутренние и внешние причины изменения состояний (модель в виде функции выхода).

Аргументами входных и выходных сигналов системы могут служить время, пространственные координаты, а также некоторые переменные, используемые в преобразованиях Лапласа, Фурье и других.

В простейшем случае оператор системы преобразует векторную функцию Х(t) в векторную функцию Y(t). Модели подобного типа называются динамическими (временными).

Динамические модели делятся на стационарные, когда структура и свойства оператора W(t) не изменяются со временем, и на нестационарные.

Реакция стационарной системы на любой сигнал зависит только от интервала времени между моментом начала действия входного возмущения и данным моментом времени. Процесс преобразования входных сигналов не зависит от сдвига входных сигналов во времени.

Реакция нестационарной системы зависит как от текущего времени, так и от момента приложения входного сигнала. В этом случае при сдвиге входного сигнала во времени (без изменения его формы) выходные сигналы не только сдвигаются во времени, но и изменяют форму.

Динамические модели делятся на модели безынерционных и инерционных (модели с запаздыванием) систем.

Безынерционные модели соответствуют системам, в которых оператор W определяет зависимость выходных величин от входных в один и тот же момент времени - y=W(Х,t).

В инерционных системах значения выходных параметров зависят не только от настоящих, но и предыдущих значений переменных

Y=W(Z,хt,хt-1,…,хt-k).

Инерционные модели еще называют моделями с памятью. Оператор преобразований может содержать параметры, которые обычно неизвестны - Y=W(,Z,Х), где ={1,2,…,k} - вектор параметров.

Важнейшим признаком структуры оператора является линейность или нелинейность по отношению к входным сигналам.

Для линейных систем всегда справедлив принцип суперпозиции, который состоит в том, что линейной комбинации произвольных входных сигналов ставится в соответствие та же линейная комбинация сигналов на выходе системы

Математическую модель с использованием линейного оператора можно записать в виде Y=WХ.

Если условие (2.1) не выполняется, модель называется нелинейной.

Классифицируются динамические модели в соответствии с тем, какие математические операции используются в операторе. Можно выделить: алгебраические, функциональные (типа интеграла свертки), дифференциальные, конечно-разностные модели и др.

Одномерной моделью называется такая, у которой и входной сигнал, и отклик одновременно являются величинами скалярными.

В зависимости от размерности параметра модели подразделяются на одно- и многопараметрические. Классификация моделей может быть продолжена также в зависимости от видов входных и выходных сигналов.

Динамический объект - это физическое тело, техническое устройство или процесс, имеющее входы, точки возможного приложения внешних воздействий, и воспринимающие эти воздействия, и выходы, точки, значения физических величин в которых характеризуют состояние объекта. Объект способен реагировать на внешние воздействия изменением своего внутреннего состояния и выходных величин, характеризующих его состояние. Воздействие на объект, и его реакция в общем случае изменяются с течением времени, они наблюдаемы, т.е. могут быть измерены соответствующими приборами. Объект имеет внутреннюю структуру, состоящую из взаимодействующих динамических элементов.

Если вчитаться и вдуматься в приведенное выше нестрогое определение, можно увидеть, что отдельно динамический объект в "чистом" виде, как вещь в себе, не существует: для описания объекта модель должна содержать еще и 4 источника воздействий (генераторы):

Среду и механизм подачи на него этих воздействий

Объект должен иметь протяженность в пространств

Функционировать во времени

В модели должны быть измерительные устройства.

Воздействием на объект может быть некоторая физическая величина: сила, температура, давление, электрическое напряжение и другие физические величины или совокупность нескольких величин, а реакцией, откликом объекта на воздействие, может быть движение в пространстве, например смещение или скорость, изменение температуры, силы тока и др.

Для линейных моделей динамических объектов справедлив принцип суперпозиции (наложения), т.е. реакция на совокупность воздействий равна сумме реакций на каждое из них, а масштабному изменению воздействия соответствует пропорциональное изменение реакции на него. Одно воздействие может быть приложено к нескольким объектам или нескольким элементам объекта.

Понятие динамический объект содержит и выражает причинно-следственную связь между воздействием на него и его реакцией. Например, между силой, приложенной к массивному телу, и его положением и движением, между электрическим напряжением, приложенным к элементу, и током, протекающим в нем.

В общем случае динамические объекты являются нелинейными, в том числе они могут обладать и дискретностью, например, изменять быстро структуру при достижении воздействием некоторого уровня. Но обычно большую часть времени функционирования динамические объекты непрерывны во времени и при малых сигналах они линейны. Поэтому ниже основное внимание будет уделено именно линейным непрерывным динамическим объектам.

Пример непрерывности: автомобиль, двигающийся по дороге - непрерывно функционирующий во времени объект, его положение зависит от времени непрерывно. Значительную часть времени автомобиль может рассматриваться как линейный объект, объект, функционирующий в линейном режиме. И только при авариях, столкновениях, когда, например, автомобиль разрушается, требуется описание его как нелинейного объекта.

Линейность и непрерывность во времени выходной величины объекта просто удобный частный, но важный случай, позволяющий достаточно просто рассмотреть значительное число свойств динамического объекта.

С другой стороны, если объект характеризуется процессами, протекающими в разных масштабах времени, то во многих случаях допустимо и полезно заменить наибыстрейшие процессы их дискретным во времени изменением.

Настоящая работа посвящена, прежде всего, линейным моделям динамических объектов при детерминированных воздействиях. Гладкие детерминированные воздействия произвольного вида могут быть генерированы путем дискретного, сравнительно редкого аддитивного действия на младшие производные воздействия дозированными дельта - функциями. Такие модели состоятельны при сравнительно малых воздействиях для весьма широкого класса реальных объектов. Например, именно так формируются сигналы управления в компьютерных играх, имитирующих управление автомобилем или самолетом с клавиатуры. Случайные воздействия пока остаются за рамками рассмотрения.

Состоятельность линейной модели динамического объекта определяется, в частности тем, что является ли его выходная величина достаточно гладкой, т.е. является ли она и несколько ее младших производных по времени непрерывными. Дело в том, что выходные величины реальных объектов изменяются достаточно плавно во времени. Например, самолет не может мгновенно переместиться из одной точки пространства в другую. Более того он, как и любое массивное тело, не может скачком изменить свою скорость, на это потребовалась бы бесконечная мощность. Но ускорение самолета или автомобиля может изменяться скачком.

Понятие динамический объект вовсе не всесторонне определяет физический объект. Например, описание автомобиля как динамического объекта позволяет ответить на вопросы, как быстро он разгоняется и тормозит, как плавно двигается по неровной дороге и кочкам, какие воздействия будут испытывать водитель и пассажиры машины при движении по дороге, на какую гору он может подняться и т.п. Но в такой модели безразлично, какой цвет у автомобиля, не важна его цена и др., постольку, они не влияют на разгон автомобиля. Модель должна отражать главные с точки зрения некоторого критерия или совокупности критериев свойства моделируемого объекта и пренебрегать второстепенными его свойствами. Иначе она будет чрезмерно сложной, что затруднит анализ интересующих исследователя свойств.

С дугой стороны, если исследователя интересует именно изменение во времени цвета автомобиля, вызываемое различными факторами, например солнечным светом или старением, то и для этого случая может быть составлено и решено соответствующее дифференциальное уравнение.

Реальные объекты, как и их элементы, которые также можно рассматривать как динамические объекты, не только воспринимают воздействия от некоторого источника, но и сами воздействуют на этот источник, противодействуют ему. Выходная величина объекта управления во многих случаях является входной для другого, последующего динамического объекта, которая также, в свою очередь, может влиять на режим работы объекта. Т.о. связи динамического объекта с внешним, по отношению к нему миром, двунаправленные.

Часто, при решении многих задач, рассматривается поведение динамического объекта только во времени, а его пространственные характеристики, в случаях, если они непосредственно не интересуют исследователя, не рассматриваются и не учитываются, за исключением упрощенного учета задержки сигнала, которая может быть обусловлена временем распространения воздействия в пространстве от источника к приемнику.

Динамические объекты описываются дифференциальными уравнениями (системой дифференциальных уравнений). Во многих практически важных случаях это линейное, обыкновенное дифференциальное уравнение (ОДУ) или система ОДУ. Многообразие видов динамических объектов определяет высокую значимость дифференциальных уравнений как универсального математического аппарата их описания, позволяющего проводить теоретические исследования (анализ) этих объектов и на основе такого анализа конструировать модели и строить полезные для людей системы, приборы и устройства, объяснять устройство окружающего нас мира, по крайней мере, в масштабах макромира (не микро- и не мега-).

Модель динамического объекта состоятельна, если она адекватна, соответствует реальному динамическому объекту. Это соответствие ограничивается некоторой пространственно-временной областью и диапазоном воздействий.

Модель динамического объекта реализуема, если можно построить реальный объект, поведение которого под влиянием воздействий в некоторой пространственно-временной области и при некотором классе и диапазоне входных воздействий соответствует поведению модели.

Широта классов, многообразие структур динамических объектов может вызвать предположение, что все они вместе обладают неисчислимым набором свойств. Однако попытка охватить и понять эти свойства, и принципы работы динамических объектов, во всем их многообразии вовсе не столь безнадежна.

Дело в том, что если динамические объекты адекватно описываются дифференциальными уравнениями, а это именно так, то совокупность свойств, характеризующих динамический объект любого рода, определяется совокупностью свойств характеризующих его дифференциальное уравнение. Можно утверждать что, по крайней мере, для линейных объектов таких основных свойств существует довольно ограниченное и сравнительно небольшое число, а поэтому ограничен и набор основных свойств динамических объектов. Опираясь на эти свойства и комбинируя элементы, обладающие ими, можно построить динамические объекты с самыми разнообразными характеристиками.

Итак, основные свойства динамических объектов выведены теоретически из их дифференциальных уравнений и соотнесены с поведением соответствующих реальных объектов.

Динамический объект - это объект, воспринимающий изменяющиеся во времени внешние воздействия и реагирующий на них изменением выходной величины. Объект имеет внутреннюю структуру, состоящую из взаимодействующих динамических элементов. Иерархия объектов ограничена снизу простейшими моделями и опирается на их свойства.

Воздействием на объект, как и его реакцией, являются физические, измеряемые величины, это может быть и совокупность физических величин, математически описываемая векторами.

При описании динамических объектов с помощью дифференциальных уравнений неявно предполагается, что каждый элемент динамического объекта получает и расходует столько энергии (такую мощность), сколько ему требуется для нормальной работы в соответствии с его назначением по отклику на поступающие воздействия. Часть этой энергии объект может получать от входного воздействия и это описывается дифференциальным уравнением явно, другая часть может поступать от сторонних источников и в дифференциальном уравнении не фигурировать. Такой подход существенно упрощает анализ модели, не искажая свойств элементов и всего объекта. При необходимости процесс обмена энергией с внешней средой может быть подробно описан в явной форме и это будут также дифференциальные и алгебраические уравнения.

В некоторых частных случаях источником всей энергии (мощности) для выходного сигнала объекта является входное воздействие: рычаг, разгон массивного тела силой, пассивная электрическая цепь и др.

В общем случае воздействие может рассматриваться как управляющее потоками энергии для получения необходимой мощности выходного сигнала: усилитель синусоидального сигнала, просто идеальный усилитель и др.

Динамические объекты, как и их элементы, которые также можно рассматривать как динамические объекты, не только воспринимают воздействие от его источника, но и сами воздействуют на этот

Вам также будет интересно:

Читы и консольные команды для Counter-Strike: Global Offensive Команда в кс го чтобы летать
В этой статье мы рассмотрим некоторые из наиболее полезных и забавных консольных команд в...
Arduino и четырехразрядный семисегментный индикатор Семисегментный индикатор 4 разряда распиновка
В сегодняшней статье поговорим о 7-сегментных индикаторах и о том, как их «подружить» с...
«Рабочие лошадки» Hi-Fi: собираем бюджетную систему Хороший бюджетный hi fi плеер
Выбор плеера - это сложный процесс, иногда человек желает получить не просто коробочку,...
Как правильно пользоваться сургучными печатями
На самом деле, сургуч - это смесь смол, окрашенная в определенный цвет. Если у вас на руках...
Лагает fallout 4 как снизить графику
10 ноября состоялся релиз долгожданной игры на ПК, PlayStation 4 и Xbox One, и постепенно...