Компьютерные подсказки

Вылетает Сталкер: Зов Припяти Программа икс рей 1

Stalker lost alpha гид по прохождению

Pony Express отслеживание почтовых отправлений

Pony Express – время и сроки доставки с Алиэкспресс в Россию

Застряли посылки с Алиэкспресс со статусом Hand over to airline: что делать?

РФ (Nigma) — интеллектуальная поисковая система

Данные для семантики — Яндекс Вордстат

Пиар ВКонтакте при помощи бирж: особенности и использование

Почему я не могу отправить сообщение?

Предупреждение «Подключение не защищено» в Google Chrome по протоколу https Нарушена конфиденциальность данных яндекс браузер

Всё что известно о смартфоне Samsung Galaxy S9 Аккумуляторная батарея Galaxy S9 и мощность

Темы оформления и русификация форума SMF, а так же установка компонента JFusion в Joomla

Автоматическое определение движка форума Позже board powered by smf

Коды в игре скайрим - зелья, ингредиенты, заклинания Код на ингредиенты скайрим

Подробная инструкция, как в "скайриме" открыть дверь золотым когтем

Интегрирующая и дифференцирующая цепи RC. Дифференцирующая цепь RC Условия дифференцирования и интегрирования

Дифференцирующей называется цепь, сигнал на выходе которой пропорционален производной от входного сигнала.

Сигналом называют физическую величину, несущую информацию. Нижу будем рассматривать импульсивные сигналы напряжения – импульсы напряжения.

Схема реальных дифференцирующих цепей показана на рис 13-33 а и 13-33 б.

Коэффициент пропорциональности М представляет собой постоянную времени цепи .

Для цепи RC=RC, для цепиRL=L/R.

Рис 13-33. Схема дифференцирующих цепей.

Дифференцирующая RC-цепь. (фильтр нижних частот)

Эта цепь является также четырехполюсником. В дифференцирующей RC-цепи сигнал снимается с резистораR, то есть
(см рис 13-33 а). Дифференцирующий (входной) сигнал имеет прямоугольную форму(см ниже рис 13-33 а).

Рассмотрим действие такого сигнала (импульса напряжения) на дифференцирующую RC-цепь.

Рис 13-34. Дифференцируемый сигнал (а) и сигнал на выходе дифференцирующей RC-цепи (б),

В момент (включение цепи) напряжение на выходе
. Это следует из того, что в момент включения в цепи по второму закону коммутации напряжение на конденсаторе сохраняет свое значение, которое было до коммутации, то есть равно 0, следовательно, все напряжение будет приложено к резисторуR(
).

Затем
будет уменьшаться по экспоненциальному закону

(13.29)

Если
,за время действия входного импульса (
)конденсатор почти полностью зарядится и в момент, когда действие импульса закончится
0, напряжение на конденсаторестанет равно(на рис 13-34 бпоказано пунктиром), а в напряжение на резистореRупадет до 0. Так как теперь цепь отключена от входного напряжения (
=0,
), конденсатор начнет разряжаться и через время
напряжение на нем станет равно 0. Ток в цепи с моментаизменит направление, а напряжение на резистореRв моментскачком станет равно
и начнет спадать по экспоненте
, а через время
станет равно 0.

Таким образом, на выходе цепи образуется два остроконечных импульса положительной и отрицательной полярностей, площади которых равны, а амплитуда равна
.

Если
форма выходного импульса
будет иметь другой вид, чем на рис

Рассмотрим два крайних случая:
и
(смотри рис 13-35 б и 13-35 в)

Рис 13-35. Изменение формы импульса на выходе дифференцирующей цепи в зависимости от соотношения между и.

А.
(см рис 13-35 б)

В этом случае за время длительности импульса конденсатор успевает полностью зарядиться еще до того, как окончится действие импульса. На резисторе в момент включения получается скачок напряжения положительной полярности, равный амплитуде прямоугольного импульса , а затем напряжение убывает по крутой экспоненте и по мере зарядки конденсатора спадает до нуля до окончания действия импульса. По окончании действия импульса (в момент) конденсатор начнет разряжаться, а за счет прохождения тока через резисторRна входе образуется импульс отрицательной полярности амплитудной -. Площадь этого импульса будет равна площади положительного импульса. Такие цепи называются дифференцирующими укорачивающими.

Б.
(см рис 13-35).

Так как время зарядки конденсатора примерно равно
, конденсатор успеет зарядиться не ранее, чем через
. Следовательно, и напряжение на резисторе
, равное в момент, уменьшится по экспоненте, станет равно нулю через
. Поэтому за время
импульс
на сопротивлениеRпрактически не искажается и повторяет по форме импульс на входе.

Такая цепь используется как переходная между усилительными каскадами и предназначается для исключения влияния действия постоянной составляющей напряжение с коллектора транзистора предшествующего каскада на последующий.

Из формул и рис 13-34 и 13-35 можно заключить, что амплитуда выходных импульсов при различных соотношениях между иостается неизменной и равной, а длительность их с уменьшениемуменьшается. Точность дифференцирования будет тем выше, чем меньшепо сравнению с.

Наиболее точное дифференцирование можно получиться с помощью операционных усилителей.

Рассмотрим АЧХ дифференцирующей RC-цепи, изображённой на рис. 13-35а.

Рис. 13-35 а. АЧХ дифференцирующей цепи RC-цепи.

Частотный коэффициент передачи дифференцирующей RC-цепи равен:

Если приравнять
к 1/
, то получают нижнюю границу полосы пропускания дефференцирующейRC-цепи
.

Из графика 2-35а видно, что полоса пропускания дифференцирующей RC-цепи ограничена только со стороны нижних частот.

Сложные радиоэлектронные устройства состоят из простых цепей. Рассмотрим цепь, состоящую из резистора и конденсатора, включенных последовательно с идеальным генератором напряжения, показанную на рис. 3.3.

Рис.3.3. Дифференцирующая цепь

Если выходное напряжение снимается с резистора, то цепь называется дифференцирующей, если с конденсатора – интегрирующей. Эти линейные цепи характеризуются стационарными и переходными характеристиками. Это связано с тем, что изменение величины действующего в цепи напряжения приводит к тому, что токи и напряжения в различных участках цепи приобретают новые значения. Изменение состояния цепи происходит не мгновенно, а в течение некоторого интервала времени. Поэтому различают установившееся и переходное состояние электрической цепи.

Электрические процессы считаются установившимися (стационарными), если закон изменения всех напряжений и токов совпадает с точностью до постоянных величин с законом изменения действующего в цепи напряжения от внешнего источника. В противном случае считают, что цепь находится в переходном (нестационарном) состоянии.

К стационарным характеристикам относятся амплитудно-частотная и фазовая характеристики линейной цепи.

Нестационарное состояние линейной цепи описывается переходной характеристикой.

Будем считать, что к входу цепи подключен идеальный генератор напряжения . На основании второго закона Кирхгофа для дифференцирующей цепи можно записать дифференциальное уравнение, связывающее напряжения и ток в ветвях цепи:

(3.2)

Так как напряжение на выходе цепи , то:

(3.3)

Подставляя в интеграл значение тока, получим:

(3.4)

Продифференцируем левую и правую части последнего уравнения по времени:

(3.5)

Перепишем это уравнение, в следующем виде:

, (3.6)

Где =— параметр цепи называемый постоянной времени цепи.

В зависимости от величины постоянной времени возможны два различных соотношения между первым и вторым слагаемыми правой части уравнения.

Если постоянная времени большая по сравнению с периодом гармонических сигналов >>Или с длительностью импульсов >>, которые можно подавать на вход этой цепи, то

И напряжение на выходе цепи с небольшими искажениями повторяет входное напряжение:

Если же постоянная времени мала по сравнению с периодом гармонических сигналов <<Или с длительностью импульсов <<, то

Отсюда напряжение на выходе равно:

Таким образом, в зависимости от величины постоянной времени такая -цепь может либо с определенными искажениями передавать входной сигнал на выход, либо с определенной степенью точности его дифференцировать. При этом форма выходного сигнала будет разной. Ниже на рис. 3.4 представлены входное напряжение, напряжения на резисторе и конденсаторе для случаев, когда постоянная времени велика и постоянная времени мала .

А Б

Рис. 3.4. Напряжения на элементах дифференцирующей цепи при (А ) и (Б )

В начальный момент времени на резисторе появляется скачок напряжения, равный амплитуде входного сигнала, а затем начинается заряд конденсатора, во время которого напряжение на резисторе будет уменьшаться.

Когда постоянная времени , конденсатор не успевает зарядиться до амплитуды входного импульса и -цепь с небольшими искажениями передает входной сигнал на выход. При << конденсатор успеет полностью зарядиться до амплитуды входного напряжения за время действия первого импульса, а за время паузы между импульсами – полностью разрядиться. При этом на выходе цепи появляются укороченные импульсы, приблизительно соответствующие производной от входного сигнала. Считается, что когда Цепочка дифференцирует входной сигнал.

Теперь определим коэффициент передачи дифференцирующей цепи. Комплексный коэффициент передачи дифференцирующей цепи при подаче на вход гармонического сигнала равен:

. (3.11)

Обозначим отношение , где — граничная частота полосы пропускания дифференцирующей цепи.

Выражение для коэффициента передачи примет вид:

Модуль коэффициента передачи равен:

. (3.13)

— граничная частота полосы пропускания, на которой модуль реактивного сопротивления становится равным величине активного сопротивления, а коэффициент передачи цепи равен . Зависимость модуля коэффициента передачи от частоты называется амплитудно–частотной характеристикой (АЧХ).

Зависимость угла сдвига фаз между выходным и входным напряжениями от частоты называется фазовой характеристикой (ФЧХ). Фазовая характеристика:

Ниже на рис. 3.5 представлены АЧХ и ФЧХ дифференцирующей цепи:

Рис. 3.5. Амплитудно–частотная и фазовая характеристики

Дифференцирующей цепи

Из амплитудно-частотной характеристики видно, что прохождение сигналов через дифференцирующую цепь сопровождается уменьшением амплитуд низкочастотных составляющих его спектра. Дифференцирующая цепь является фильтром высоких частот.

Из фазовой характеристики видно, что фазы низкочастотных составляющих сдвигаются на больший угол, чем фазы высокочастотных составляющих.

Переходную характеристику дифференцирующей цепи можно получить, если на вход подать напряжение в виде единичного скачка. Комплексный коэффициент передачи равен

Дифференцирующие цепи – это цепи, в которых напряжение на выходе пропорционально производной входного напряжения. Эти цепи решают две основные задачи преобразования сигналов: получение импульсов очень малой длительности (укорочение импульсов), которые используются для запуска управляемых преобразователей электрической энергии, триггеров, одновибраторов и других устройств; выполнение математической операции дифференцирования (получение производной по времени) сложных функций, заданных в виде электрических сигналов, что часто встречается в вычислительной технике, аппаратуре авторегулирования и др.

Схема емкостной дифференцирующей цепи показана на рис. 1. Входное напряжение прикладывается ко всей цепи, а выходное снимается с резистора R. Ток, протекающий через конденсатор, связан с напряжением на нем известным соотношением i C = C (dU C /dt). Учитывая, что этот же ток протекает через резистор R, запишем выходное напряжение

Если U ВЫХ << U ВХ, что справедливо, когда падение напряжения на резисторе много меньше напряжения U С, то уравнение можно записать в приближенном виде U ВЫХ . Соотношение U ВЫХ << U ВХ » U C выполняется, если величина сопротивления R много меньше величины реактивного сопротивления конденсатора, т.е. R << 1/wC (для сигнала синусоидальной формы) и R << 1/w в C, где w в – частоты высшей гармоники импульсного сигнала.

Величина t = RC называется постоянной времени цепи. Из курса электричества известно, что конденсатор заряжается (разряжается) через резистор по экспоненциальному закону. Через промежуток времени t = t = RC конденсатор заряжается на 63 % от поданного входного напряжения, через t = 2,3 t - до 90 % от U ВХ и через 4,6 t - до 99 % от U ВХ.

Пусть на вход дифференцирующей цепи (рис. 1) подан прямоугольный импульс длительностью t И (рис. 2, а). Пусть t И = 10 t. Тогда выходной сигнал будет иметь форму, показанную на рис. 2, г. Действительно, в начальный момент времени напряжение на конденсаторе равно нулю, и мгновенно оно измениться не может. Поэтому все входное напряжение прикладывается к резистору. В дальнейшем конденсатор заряжается экспоненциально убывающим током. При этом напряжение на конденсаторе увеличивается, а напряжение на резисторе уменьшается так, что в каждый момент времени выполняется равенство U BX = U C + U ВЫХ. Через промежуток времени t ³ 3 t конденсатор заряжается практически до входного напряжения, зарядный ток прекратится и выходное напряжение станет равным нулю.

Когда входной импульс закончится (U BX = 0), конденсатор начнет разряжаться через резистор R и входную цепь. Направление тока разряда противоположно направлению зарядного тока, поэтому полярность напряжения на резисторе меняется. По мере разряда конденсатора напряжение на нем уменьшается, а вместе с ним уменьшается напряжение на резисторе R. В результате получаются укороченные импульсы (при t И > 4¸5 RC). Изменение формы импульса при других соотношениях длительности импульса и постоянной времени показано на рис. 2,б,в.

Интегрирующая цепь – это цепь, у которой выходное напряжение пропорционально интегралу по времени от входного напряжения. Отличаются интегрирующие цепи (рис. 3) от дифференцирующих (рис. 1) тем, что выходное напряжение снимается с конденсатора. Когда напряжение на конденсаторе С незначительно по сравнению с напряжением на резисторе R, т.е. U ВЫХ = U C << U R , то ток i в цепи пропорционален входному напряжению, которое прикладывается ко всей цепи. Поэтому

С одним из плеч, обладающих ёмкостным сопротивлением переменному току.

Энциклопедичный YouTube

    1 / 3

    Электрические цепи (часть 1)

    Лекция 27. Заряд и разряд конденсатора через сопротивление (RC-цепочка)

    Лекция 29. Прохождение переменного тока через RC-цепочку

    Субтитры

    Мы провели много времени, обсуждая электростатические поля и потенциал заряда, или потенциальную энергию неподвижного заряда. Ну а теперь давайте посмотрим, что произойдет, если позволить заряду двигаться. И это будет намного интереснее, ведь вы узнаете, как работает большая часть современного мира вокруг нас. Итак, предположим, что есть источник напряжения. Как бы мне его нарисовать? Пусть будет так. Возьму желтый цвет. Вот это источник напряжения, также известный нам как батарейка. Здесь положительный контакт, здесь отрицательный. Принцип работы батарейки - это тема для отдельного видео, которое я обязательно запишу. Стоит сказать только, что неважно, сколько заряда - я все вам объясню через секунду - так вот, неважно, сколько заряда перетекает с одной стороны батарейки в другую, каким-то образом напряжение остается постоянным. И это не совсем понятная вещь, ведь мы уже изучили конденсаторы, и еще больше о них узнаем в контексте цепей, но мы уже знаем о конденсаторах то, что если убрать часть заряда с одного из его концов, то общее напряжение на конденсаторе уменьшится. Но батарейка - волшебная вещь. Кажется, ее изобрел Вольта, и поэтому мы измеряем напряжение в вольтах. Но даже когда одна сторона волшебной батарейки теряет заряд, напряжение, или потенциал между двумя полюсами, остается постоянным. В этом и заключается особенность батарейки. Итак, предположим, что есть этот магический инструмент. У вас наверняка найдется батарейка в калькуляторе или телефоне. Посмотрим, что произойдет если позволим заряду двигаться с одного полюса на другой. Предположим, что у меня есть проводник. Идеальный проводник. Его нужно изображать прямой линией, которая у меня, к сожалению, совсем не получается. Ну вот примерно так. Что же я сделал? В процессе соединения положительного контакта с отрицательным, я показываю вам стандартную систему обозначений для инженеров, электриков, и так далее. Так что возьмите себе на заметку, возможно, вам это когда-нибудь пригодится. Эти линии представляют собой провода. Их необязательно рисовать под прямыми углами. Я так делаю исключительно для наглядности. Предполагается, что этот провод - идеальный проводник, по которому заряд течет свободно, не встречая препятствий. Вот эти зигзаги - это резистор, и он как раз и будет препятствием для заряда. Он не даст заряду двигаться на максимальной скорости. А за ним, разумеется, снова наш идеальный проводник. Итак, в какую же сторону потечет заряд? Раньше я уже говорил, в электрических цепях текут электроны. Электроны - это такие маленькие частицы, которые очень быстро вращаются вокруг ядра атома. И обладают текучестью, которая позволяет им двигаться через проводник. Само движение объектов, если электроны вообще можно назвать объектами - некоторые поспорят, что электроны - просто набор уравнений - но само их движение происходит от отрицательного контакта к положительному. Люди, изначально придумавшие схемы электронных цепей, пионеры электроинженерии, электрики или кто-то там еще, решили, и мне кажется, исключительно, чтобы всех запутать, что ток течет от положительного к отрицательному. Именно так. Поэтому направление тока обычно указывается в эту сторону, а ток обозначается латинской буквой I. Итак, что такое ток? Ток это… Погодите. Прежде, чем я расскажу вам, что такое ток, запомните, большинство учебников, особенно если вы станете инженером, будут утверждать, что ток течет от положительного контакта к отрицательному, но реальный поток частиц идет от отрицательного к положительному. Большие и тяжелые протоны и нейтроны никак не смогут двигаться в эту сторону. Просто сравните размеры протона и электрона, и вы поймете, насколько это безумно. Это электроны, маленькие супербыстрые частицы, что движутся через проводник из отрицательного контакта. Поэтому напряжение можно представить как отсутствие потока электронов в эту сторону. Не хочу вас запутать. Но, как бы там ни было, просто запомните, что это общепринятый стандарт. Но реальность, в какой-то мере, противоположна ему. Так что же такое резистор? Когда ток течет - и я хочу изобразить это как можно ближе к реальности, чтобы вы хорошо видели, что же происходит. Когда электроны текут - вот тут такие маленькие электроны, идут по проводу - мы полагаем, что этот провод настолько удивительный, что они никогда не сталкиваются с его атомами. Но когда электроны добираются до резистора, они начинают врезаться в частицы. Они начинают сталкиваться с другими электронами в этом окружении. Вот это и есть резистор. Они начинают сталкиваться с другими электронами в веществе, сталкиваются с атомами и молекулами. И из-за этого электроны замедляются, сталкиваясь с частицами. Поэтому, чем больше частиц у них на пути, или чем меньше для них места, тем сильнее материал замедляет движение электронов. И как мы позже с вами увидим, чем он длиннее, тем больше у электрона шанс врезаться во что-нибудь. Вот это и есть резистор, он оказывает сопротивление и определяет скорость тока. «Resistance» - это английское слово, обозначающее сопротивление. Итак, ток, хотя и принято, что он течет из положительного к отрицательному, это просто поток заряда за секунду. Давайте запишем. Мы немного отклоняемся от темы, но я думаю, вы все поймете. Ток - это поток заряда, или изменение заряда за секунду, или, скорее, за изменение во времени. Что же такое напряжение? Напряжение - это то, как сильно заряд притягивается к контакту. Поэтому если между этими двумя контактами высокое напряжение, то электроны сильно притягиваются к другому контакту. И если напряжение еще выше, то электроны притягиваются еще сильнее. Поэтому до того, как стало ясно, что напряжение - это всего лишь разность потенциалов, его, называли электродвижущей силой. Но сейчас мы знаем, что это не сила. Это разность потенциалов, мы даже можем назвать это электрическим давлением, и раньше напряжение так и называли - электрическое давление. Как сильно электроны притягиваются к другому контакту? Как только мы откроем электронам путь через цепь, они начнут двигаться. И, поскольку мы считаем эти провода идеальными, не имеющими сопротивления, электроны смогут двигаться максимально быстро. Но, когда они доберутся до резистора, начнут сталкиваться с частицами, и это ограничит их скорость. Поскольку этот объект ограничивает скорость электронов, то неважно, как быстро они будут двигаться после, резистор был ограничителем. Думаю, вы понимаете. Таким образом, хотя электроны здесь и могут двигаться очень быстро, им придется замедлиться здесь, и, даже ускорившись потом, электроны в начале не смогут двигаться быстрее, чем через резистор. Почему же так происходит? Если эти электроны медленнее, то ток здесь меньше, ведь ток это скорость, с которой движется заряд. Поэтому, если ток здесь ниже, а здесь - выше, то начнут образовываться излишки заряда где-то здесь, пока ток будет ждать, чтобы пройти через резистор. И мы знаем, что так не бывает, все электроны двигаются через цепь с одинаковой скоростью. И я иду против общепринятых стандартов, предполагающих, что положительны частицы как-то движутся в этом направлении. Но я хочу, чтобы вы понимали, что происходит в цепи, потому что тогда сложные задачи не будут казаться такими… Такими пугающими, что ли. Мы знаем, что ток, или сила тока, пропорционален напряжению всей цепи, и это называется законом Ома. Закон Ома. Итак, мы знаем, что напряжение пропорционально силе тока на всей цепи. Напряжение равняется силе тока, умноженной на сопротивление, или, иначе, напряжение, деленое на сопротивление равняется силе тока. Это закон Ома, и он действует всегда, если температура остается постоянной. Позже мы изучим это подробнее, и узнаем, что когда резистор нагревается, атомы и молекулы двигаются быстрее, кинетическая энергия увеличивается. И тогда электроны чаще сталкиваются с ними, поэтому сопротивление увеличивается с температурой. Но, если мы предположим, что для некоего материала температура постоянна, а позже мы узнаем, что у разных материалов разные коэффициенты сопротивления. Но для конкретного материала при постоянной температуре для заданной формы, напряжение на резисторе, деленное на его сопротивление, равняется силе тока, текущего через него. Сопротивление объекта измеряется в омах, и обозначается греческой буквой Омега. Простой пример: предположим, что это 16-и вольтовая батарейка, имеющая 16 вольт разности потенциалов между положительным контактом и отрицательным. Итак, 16-и вольтовая батарейка. Предположим, что сопротивление резистора - 8 Ом. Чему же равна сила тока? Я продолжаю игнорировать общепринятый стандарт, хотя, давайте вернемся к нему. Чему равна сила тока в цепи? Здесь все вполне очевидно. Нужно просто применить закон Ома. Его формула: V = IR. Итак, напряжение - 16 вольт, и оно равняется силе тока, умноженной на сопротивление, 8 Ом. То есть сила тока равна 16 Вольт разделить на 8 Ом, что равняется 2. 2 амперам. Амперы обозначаются большой буквой А, и в них измеряется сила тока. Но, как мы знаем, ток - это количество заряда за некоторое время, то есть два кулона в секунду. Итак, 2 кулона в секунду. Ну ладно, прошло уже больше 11 минут. Нужно остановиться. Вы узнали основы закона Ома и, может быть, стали понимать, что же происходит в цепи. До встречи в следующем видео. Subtitles by the Amara.org community

Интегрирующая RC-цепочка

Если входной сигнал подаётся к V in , а выходной снимается с V c (см. рисунок), то такая цепь называется цепью интегрирующего типа.

Реакция цепи интегрирующего типа на единичное ступенчатое воздействие с амплитудой V определяется следующей формулой:

U c (t) = U 0 (1 − e − t / R C) . {\displaystyle \,\!U_{c}(t)=U_{0}\left(1-e^{-t/RC}\right).}

Таким образом, постоянная времени τ этого апериодического процесса будет равна

τ = R C . {\displaystyle \tau =RC.}

Интегрирующие цепи пропускают постоянную составляющую сигнала, отсекая высокие частоты, то есть являются фильтрами нижних частот . При этом чем выше постоянная времени τ {\displaystyle \tau } , тем ниже частота среза. В пределе пройдёт только постоянная составляющая. Это свойство используется во вторичных источниках питания, в которых необходимо отфильтровать переменную составляющую сетевого напряжения. Интегрирующими свойствами обладает кабель из пары проводов, поскольку любой провод является резистором, обладая собственным сопротивлением, а пара идущих рядом проводов ещё и образуют конденсатор, пусть и с малой ёмкостью. При прохождении сигналов по такому кабелю, их высокочастотная составляющая может теряться, причём тем сильнее, чем больше длина кабеля.


Дифференцирующая RC-цепочка

Дифференцирующая RC-цепь получается, если поменять местами резистор R и конденсатор С в интегрирующей цепи. При этом входной сигнал идёт на конденсатор, а выходной снимается с резистора. Для постоянного напряжения конденсатор представляет собой разрыв цепи, то есть постоянная составляющая сигнала в цепи дифференцирующего типа будет отсечена. Такие цепи являются фильтрами верхних частот . И частота среза в них определяется всё той же постоянной времени τ {\displaystyle \tau } . Чем больше τ {\displaystyle \tau } , тем ниже частота, которая может быть без изменений пропущена через цепь.

Дифференцирующие цепи имеют ещё одну особенность. На выходе такой цепи один сигнал преобразуется в два последовательных скачка напряжения вверх и вниз относительно базы с амплитудой, равной входному напряжению. Базой является либо положительный вывод источника, либо "земля", в зависимости от того, куда подключён резистор. Когда резистор подключён к источнику, амплитуда положительного выходного импульса будет в два раза выше напряжения питания. Этим пользуются для умножения напряжения, а так же, в случае подключения резистора к "земле", для формирования двуполярного напряжения из имеющегося однополярного.

А вместе они образуют RC-цепь, то есть это цепь, которая состоит из конденсатора и резистора. Все просто;-)

Как вы помните, конденсатор представляет из себя две обкладки на некотором расстоянии друг от друга.

Вы, наверное, помните, что его емкость зависит от площади обкладок, от расстояния между ними, а также от вещества, которое находится между обкладками. Или формулой для плоского конденсатора:


где


Ладно, ближе к делу. Пусть у нас имеется конденсатор. Что с ним можно сделать? Правильно, зарядить;-) Для этого берем источник постоянного напряжения и подаем заряд на конденсатор, тем самым заряжая его:

В результате, у нас конденсатор зарядится. На одной обкладке будет положительный заряд, а на другой обкладке – отрицательный:

Даже если убрать батарею, у нас заряд на конденсаторе все равно сохранится в течение какого-то времени.

Сохранность заряда зависит от сопротивления материала между пластинами. Чем оно меньше, тем быстрее со временем будет разряжаться конденсатор, создавая ток утечки . Поэтому самыми плохими, в плане сохранности заряда, являются электролитические конденсаторы, или в народе – электролиты:


Но что произойдет, если к конденсатору мы подсоединим резистор?

Конденсатор разрядится, так как цепь станет замкнутой.

Постоянная времени RC-цепи

Кто хоть чуть-чуть шарит в электронике, прекрасно понимает эти процессы. Это все банальщина. Но дело в том, что мы не можем наблюдать процесс разрядки конденсатора, просто посмотрев на цепь. Для этого нам понадобится с функцией записи сигнала. Благо на моем рабочем столе уже есть место этому прибору:


Итак, план действий будет такой: мы будем заряжать конденсатор с помощью блока питания, а потом разряжать его на резисторе и смотреть осциллограмму, как разряжается конденсатор. Соберем классическую схему, которая есть в любом учебнике по электронике:

в этот момент мы заряжаем конденсатор


потом переключаем тумблер S в другое положение и разряжаем конденсатор, наблюдая процесс разряда конденсатора на осциллографе


Думаю, с этим все понятно. Ну что же, приступим к сборке.

Берем макетную плату и собираем схемку. Конденсатор я взял емкостью в 100мкФ, а резистор 1 КилоОм.


Вместо тумблера S я буду вручную перекидывать желтый проводок.

Ну все, цепляемся щупом осциллографа к резистору

и смотрим осциллограмму, как разряжается конденсатор.


Те, кто впервые читает про RC-цепи, думаю, немного удивлены. По логике, разряд должен проходить прямолинейно, но здесь мы видим загибулину. Разряд происходит по так называемой экспоненте . Так как я не люблю алгебру и матанализ, то не буду приводить различные математические выкладки. Кстати, а что такое экспонента? Ну экспонента – это график функции “е в степени икс”. Короче, все учились в школе, вам лучше знать;-)

Так как при замыкании тумблера у нас получилась RC-цепь, то у нее есть такой параметр, как постоянная времени RC-цепи . Постоянная времени RC-цепи обозначается буквой t , в другой литературе обозначают большой буквой T. Чтобы было проще для понимания, давайте также будем обозначать постоянную времени RC цепи большой буквой Т.

Итак, думаю стоит запомнить, что постоянная времени RC-цепи равняется произведению номиналов сопротивления и емкости и выражается в секундах, или формулой:

T=RC

где T – постоянная времени, Секунды

R – сопротивление, Ом

С – емкость, Фарады

Давайте посчитаем, чему равняется постоянная времени нашей цепи. Так как у меня конденсатор емкостью в 100 мкФ, а резистор 1 кОм, то постоянная времени равняется T=100 x 10 -6 x 1 х 10 3 =100 x 10 -3 = 100 миллисекунд.

Для тех, кто любит считать глазами, можно построить уровень в 37% от амплитуды сигнала и затем уже аппроксимировать на ось времени. Это и будет постоянная времени RC-цепи. Как вы видите, наши алгебраические расчеты почти полностью сошлись с геометрическими, так как цена деления стороны одного квадратика по времени равняется 50 миллисекундам.


В идеальном случае конденсатор сразу же заряжается, если на него подать напряжение. Но в реальном все-таки есть некоторое сопротивление ножек, но все равно можно считать, что заряд происходит почти мгновенно. Но что будет, если заряжать конденсатор через резистор? Разбираем прошлую схему и стряпаем новую:

исходное положение


как только мы замыкаем ключ S, у нас конденсатор начинает заряжаться от нуля и до значения 10 Вольт, то есть до значения, которое мы выставили на блоке питания


Наблюдаем осциллограмму, снятую с конденсатора


Ничего общего не увидели с прошлой осциллограммой, где мы разряжали конденсатор на резистор? Да, все верно. Заряд тоже идет по экспоненте;-). Так как радиодетали у нас одинаковые, то и постоянная времени тоже одинаковая. Графическим способом она высчитывается как 63% от амплитуды сигнала


Как вы видите, мы получили те же самые 100 миллисекунд.

По формуле постоянной времени RC-цепи, нетрудно догадаться, что изменение номиналов сопротивления и конденсатора повлечет за собой изменение и постоянной времени. Поэтому, чем меньше емкость и сопротивление, тем короче по времени постоянная времени. Следовательно, заряд или разряд будет происходить быстрее.

Для примера, давайте поменяем значение емкости конденсатора в меньшую сторону. Итак, у нас был конденсатора номиналом в 100 мкФ, а мы поставим 10 мкФ, резистор оставляем такого же номинала в 1 кОм. Посмотрим еще раз на графики заряда и разряда.

Вот так заряжается наш конденсатор номиналом в 10 мкФ


А вот так он разряжается


Как вы видите, постоянная времени цепи в разы сократилась. Судя по моим расчетам она стала равняться T=10 x 10 -6 x 1000 = 10 x 10 -3 = 10 миллисекунд. Давайте проверим графо-аналитическим способом, так ли это?

Строим на графике заряда или разряда прямую на соответствующем уровне и аппроксимируем ее на ось времени. На графике разряда будет проще;-)


Одна сторона квадратика по оси времени у нас 10 миллисекунд (чуть ниже рабочего поля написано M:10 ms), поэтому нетрудно посчитать, что постоянная времени у нас 10 миллисекунд;-). Все элементарно и просто.

То же самое можно сказать и про сопротивление. Емкость я оставляю такой же, то есть 10 мкФ, резистор меняю с 1 кОм на 10 кОм. Смотрим, что получилось:


По расчетам постоянная времени должна быть T=10 x 10 -6 x 10 x 10 3 = 10 x 10 -2 = 0,1 секунда или 100 миллисекунд. Смотрим графо-аналитическим способом:


100 миллисекунд;-)

Вывод: чем больше номинал конденсатора и резистора, тем больше постоянная времени, и наоборот, чем меньше номиналы этих радиоэлементов, тем меньше постоянная времени. Все просто;-)

Ладно, думаю, с этим все понятно. Но куда можно применить этот принцип зарядки и разрядки конденсатора? Оказывается, применение нашлось…

Интегрирующая цепь

Собственно сама схема:


А что будет, если мы на нее будем подавать прямоугольный сигнал с разной частотой? В дело идет китайский генератор функций :


Выставляем на нем частоту 1 Герц и размахом в 5 Вольт


Желтая осциллограмма – это сигнал с генератора функций, который подается на вход интегрирующей цепи на клеммы Х1, Х2, а с выхода мы снимаем красную осциллограмму, то есть с клемм Х3, Х4:


Как вы могли заметить, конденсатор почти полностью успевает зарядиться и разрядиться.

Но что будет, если мы добавим частоту? Выставляю на генераторе частоту в 10 Герц. Смотрим что у нас получилось:


Конденсатор не успевает заряжаться и разряжаться как уже приходит новый прямоугольный импульс. Как мы видим, амплитуда выходного сигнала очень сильно просела, можно сказать, он скукожился ближе к нулю.

А сигнал в 100 Герц вообще не оставил ничего от сигнала, кроме малозаметных волн


Сигнал в 1 Килогерц на выходе вообще не дал ничего…


Еще бы! Попробуй-ка с такой частотой перезаряжать конденсатор:-)

Все то же самое касается и других сигналов: синусоиды и треугольного. везде выходной сигнал почти равен нулю на частоте 1 Килогерц и выше.



“И это все, на что способна интегрирующая цепь?” – спросите вы. Конечно нет! Это было только начало.

Давайте разберемся… Почему у нас с возрастанием частоты сигнал стал прижиматься к нулю и потом вообще пропал?

Итак, во-первых, эта цепь у нас получается как делитель напряжения , и во-вторых, конденсатор – это частотно-зависимый радиоэлемент. Его сопротивление зависит от частоты. Про это можно прочитать в статье конденсатор в цепи постоянного и переменного тока . Следовательно, если бы мы подавали постоянный ток на вход (у постоянного тока частота 0 Герц), то и на выходе бы тоже получили тот же самый постоянный ток такого же значения, которое загоняли на вход. В это случае конденсатору ведь по барабану. Все что он сможет сделать в этой ситуации – тупо зарядиться по экспоненте и все. На этом его участь в цепи постоянного тока заканчивается и он стает диэлектриком для постоянного тока.

Но как только в цепь подается переменный сигнал, конденсатор вступает в игру. Тут его сопротивление уже зависит от частоты. И чем она больше, тем меньшим сопротивлением обладает конденсатор. Формула сопротивления конденсатора от частоты:

где

Х С – это сопротивление конденсатора, Ом

П – постоянная и равняется приблизительно 3,14

F – частота, Герц

С – емкость конденсатора, Фарад

Итак, что в результате получается? А получается то, что чем больше частота, тем меньше сопротивление конденсатора. На нулевой частоте у нас сопротивление конденсатора в идеале стает равно бесконечности (поставьте в формулу 0 Герц частоту). А так как у нас получился делитель напряжения

следовательно, на меньшем сопротивлении падает меньшее напряжение. С ростом частоты сопротивление конденсатора очень сильно уменьшается и поэтому падение напряжения на нем стает почти 0 Вольт, что мы и наблюдали на осциллограмме.

Но на этом ништяки не заканчиваются.

Давайте вспомним, что из себя представляет сигнал с постоянной составляющей. Это есть ничто иное, как сумма переменного сигнала и постоянного напряжения. Взглянув на рисунок ниже, вам все станет ясно.


То есть в нашем случае можно сказать, этот сигнал (ниже на картинке) имеет в своем составе постоянную составляющую, другими словами, постоянное напряжение

Для того, чтобы выделить постоянную составляющую из этого сигнала, нам достаточно прогнать его через нашу интегрирующую цепь. Давайте рассмотрим все это на примере. С помощью нашего генератора функций мы поднимем нашу синусоиду “над полом”, то есть сделаем вот так:

Итак, все как обычно, желтый входной сигнал цепи, красный – выходной. Простая двухполярная синусоида дает нам на выходе RC интегрирующей цепи 0 Вольт:


Чтобы понять, где нулевой уровень сигналов, я их пометил квадратиком:


Теперь давайте я добавлю постоянную составляющую в синусоиду, а точнее – постоянное напряжение, благо это сделать мне позволяет генератор функций:


Как вы видите, как только я поднял синус “над полом”, на выходе цепи я получил постоянное напряжение величиной в 5 Вольт. Именно на 5 Вольт я поднимал сигнал в генераторе функций;-). Цепочка выделила постоянную составляющую из синусоидального приподнятого сигнала без проблем. Чудеса!

Но мы так и не разобрались, почему цепь называется интегрирующей? Кто хорошо учился в школе, в классе эдак 8-9, то наверняка помнит геометрический смысл интеграла – это есть ничто иное, как площадь под кривой.

Давайте рассмотрим тазик с кубиками льда в двухмерной плоскости:


Что будет, если весь лед растает и превратится в воду? Все верно, вода ровным слоем покроет тазик одной плоскостью:


Но какой будет этот уровень воды? Вот именно – средний. Это среднее значение этих башен из кубиков льда. Так вот, интегрирующая цепочка делает то же самое! Тупо усредняет значение сигналов до одного постоянного уровня! Можно сказать, усредняет площадь до одного постоянного уровня.

Но самый смак получается тогда, когда мы подаем на вход прямоугольный сигнал. Давайте так и сделаем. Подадим положительный меандр на RC интегрирующую цепь.


Как вы видите, постоянная составляющая меандра равна половине его амплитуды. Думаю, вы уже и сами догадались, если бы представили тазик с кубиками льда). Или просто подсчитайте площадь каждого импульса и размажьте его равномерным слоем по осциллограмме, как гов… как сливочное масло по хлебу;-)

Ну а теперь самое веселое. Сейчас я буду менять скважность нашего прямоугольного сигнала, так как скважность – это ничто иное, как отношение периода на длительность импульса, следовательно, мы будем менять длительность импульсов.

Уменьшаю длительность импульсов


Увеличиваю длительность импульсов


Если никто ничего до сих пор не заметил, просто взгляните на уровень красной осциллограммы и все станет понятно. Вывод: управляя скважностью, мы можем менять уровень постоянной составляющей. Именно этот принцип и заложен в ШИМ (Широтно-Импульсной Модуляции). О ней как-нибудь поговорим в отдельной статье.

Дифференцирующая цепь

Еще одно ругательное слово, которое пришло с математики – дифференцирующий. Башка начинает сразу же болеть от одного только их произношения. Но, куда деваться? Электроника и математика неразлучные друзья.

А вот и сама дифференциальная цепочка


В схеме мы только переставили резистор и конденсатор местами

Ну а теперь проведем также все опыты, как мы делали с интегрирующей цепью. Для начала подаем на вход дифференциальной цепи низкочастотный двухполярный меандр с частотой в 1,5 Герца и с размахом в 5 Вольт. Желтый сигнал – это сигнал с генератора частоты, красный – с выхода дифференциальной цепочки:


Как вы видите, конденсатор успевает почти полностью разрядится, поэтому у нас получилась вот такая красивая осциллограмма.

Давайте увеличим частоту до 10 Герц


Как видите, конденсатор не успевает разрядиться, как уже приходит новый импульс.

Сигнал в 100 Герц сделал кривую разряда еще менее заметной.


Ну и добавим частоту до 1 Килогерца


Какой на входе, такой и на выходе;-) С такой частотой конденсатор вообще не успевает разряжаться, поэтому вершинки выходных импульсов гладкие и ровные.

Но и на этом тоже ништяки не заканчиваются.

Давайте я подниму входной сигнал над “уровнем моря”, то есть выведу его в положительную часть полностью. Смотрим, что получается на выходе (красный сигнал)


Ничего себе, красный сигнал по форме и по положению остался таким же, посмотрите – в нем нет постоянной составляющей, как в желтом сигнале, который мы подавали из нашего генератора функций.

Могу даже желтый сигнал вывести в отрицательную область, но на выходе мы все равно получим переменную составляющую сигнала без всяких хлопот:


Да и вообще пусть сигнал будет с небольшой отрицательной постоянной составляющей, все равно на выходе мы получим переменную составляющую:


Все то же самое касается и любых других сигналов:



В результате опытов мы видим, что основная функция дифференциальной цепи – это выделение переменной составляющей из сигнала, который содержит в себе как переменную, так и постоянную составляющую. Иными словами – выделение переменного тока из сигнала, который состоит из суммы переменного тока и постоянного тока.

Почему так происходит? Давайте разберемся. Рассмотрим нашу дифференциальную цепь:

Если внимательно рассмотреть эту схему, то мы можем увидеть тот же самый делитель напряжения, как и в интегрирующей цепи. Конденсатор – частотно-зависимый радиоэлемент. Итак, если подать сигнал с частотой в 0 Герц (постоянный ток), то у нас конденсатор тупо зарядится и потом вообще перестанет пропускать через себя ток. Цепь будет в обрыве. Но если мы будем подавать переменный ток, то и через конденсатор он тоже начнет проходить. Чем больше частота – тем меньше сопротивление конденсатора. Следовательно, весь переменный сигнал будет падать на резисторе, с которого мы как раз и снимаем сигнал.

Но если мы будем подавать смешанный сигнал, то есть переменный ток + постоянный ток, то на выходе мы получим просто переменный ток. В этом мы с вами уже убеждались на опыте. Почему так произошло? Да потому что конденсатор не пропускает через себя постоянный ток!

Заключение

Интегрирующую цепь также называют фильтром низких частот (ФНЧ), а дифференцирующую – фильтром высоких частот (ФВЧ). Более подробно про фильтры . Чтобы точнее их сделать, нужно провести расчет на нужную вам частоту. RC цепи используются везде, где надо выделить постоянную составляющую (ШИМ), переменную составляющую (межкаскадное соединение усилителей), выделить фронт сигнала, сделать задержку и тд… По мере глубины погружения в электронику вы будете часто встречаться с ними.

Вам также будет интересно:

Читы и консольные команды для Counter-Strike: Global Offensive Команда в кс го чтобы летать
В этой статье мы рассмотрим некоторые из наиболее полезных и забавных консольных команд в...
Arduino и четырехразрядный семисегментный индикатор Семисегментный индикатор 4 разряда распиновка
В сегодняшней статье поговорим о 7-сегментных индикаторах и о том, как их «подружить» с...
«Рабочие лошадки» Hi-Fi: собираем бюджетную систему Хороший бюджетный hi fi плеер
Выбор плеера - это сложный процесс, иногда человек желает получить не просто коробочку,...
Как правильно пользоваться сургучными печатями
На самом деле, сургуч - это смесь смол, окрашенная в определенный цвет. Если у вас на руках...
Лагает fallout 4 как снизить графику
10 ноября состоялся релиз долгожданной игры на ПК, PlayStation 4 и Xbox One, и постепенно...